Nonlocomotor and locomotor hindlimb responses evoked by electrical microstimulation of the lumbar cord in spinalized cats.
نویسندگان
چکیده
As a preliminary step to using intraspinal microstimulation (ISMS) for rehabilitation purposes, the distribution of various types of hindlimb responses evoked by ISMS in spinal cats (T(13)) is described. The responses to ISMS applied through a single electrode was assessed, before and after an intravenous injection of clonidine (noradrenergic agonist), using kinematics and electromyographic recordings in subacute (5-7 days, untrained) or chronic (3-5 wk trained on a treadmill) spinal cats. ISMS was applied in the dorsal, intermediate and ventral areas of segments L(3)-L(7), from midline to 3 mm laterally. Uni- and bilateral non-locomotor responses as well as rhythmical locomotor responses were evoked. In the subacute cats, ipsilateral flexion was elicited in the dorsal region of L(3)-L(7), whereas ipsilateral extension was evoked more ventrally and mainly in the caudal segments. Dorsal stimuli could induce ipsilateral flexion followed by ipsilateral extension. Sites inducing bilateral flexion and bilateral extension were similarly distributed to those evoking ipsilateral flexion and extension in the rostrocaudal axis but were evoked from more medial sites. Ipsilateral flexion with crossed extension was evoked from intermediate and ventral zones of all segments and lateralities. Unilateral ipsilateral locomotion was rarely observed. Contralateral locomotion was more frequent and mainly evoked medially, whereas bilateral locomotion was evoked exclusively from dorsal regions. With some exceptions, those distribution gradients were similar in the four conditions (subacute, chronic, pre- and postclonidine), but the proportion of each response could vary. The distribution of ISMS-evoked responses is discussed as a function of known localization of interneurons and motoneurons.
منابع مشابه
Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats.
Intraspinal microstimulation (ISMS) through a single microelectrode can induce locomotion in cats spinalized at T(13) 1 wk before (untrained) or after 3-5 wk of treadmill training. Here we study the optimal parameters of ISMS and the characteristics of locomotion evoked. ISMS was applied in the dorsal region of segments L(3)-S(1) at different lateralities (midline to 2.5 mm) and after an intrav...
متن کاملAbbreviated title: Spinal modularity is preserved in chronic spinal cats.
Chronic spinal cats with neurotrophin-secreting fibroblast (NTF) transplants recover locomotor function (Boyce et al. 2007). To ascertain possible mechanisms, intraspinal microstimulation was used to examine the lumbar spinal cord motor output of four groups of chronic spinal cats: 1) untrained cats with unmodified-fibroblast graft (Opcontrol) or 2) NTF graft, and 3) locomotor-trained cats with...
متن کاملThe Effects of lntrathecal Administration of Excitatory Amino Acid Agonists and Antagonists on the Initiation of Locomotion in the Adult Cat
Development of pharmacological strategies for the control of locomotion in patients with spinal cord injury or disease requires an understanding of the neuroactive substances involved in the activation of the spinal cord neural systems for the control of locomotion. Studies using the in vitro preparations of the lamprey, frog embryo, and newborn rat indicate that excitatory amino acids (EAAs) a...
متن کاملMid-lumbar segments are needed for the expression of locomotion in chronic spinal cats.
In acute experiments performed in decerebrated and spinalized (T13) cats, an intraspinal injection of clonidine, a noradrenergic agonist, restricted to mid-lumbar segments L3-L4, can induce hindlimb locomotion, whereas yohimbine, a noradrenergic antagonist, can block spinal locomotion, and a second spinal lesion at L4 can abolish all locomotor activity. In the present study, we investigated whe...
متن کاملDual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern.
The recovery of voluntary quadrupedal locomotion after an incomplete spinal cord injury can involve different levels of the CNS, including the spinal locomotor circuitry. The latter conclusion was reached using a dual spinal lesion paradigm in which a low thoracic partial spinal lesion is followed, several weeks later, by a complete spinal transection (i.e., spinalization). In this dual spinal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 96 6 شماره
صفحات -
تاریخ انتشار 2006